77 research outputs found

    Sequential development of interleukin 2–dependent effector and regulatory T cells in response to endogenous systemic antigen

    Get PDF
    Transfer of naive antigen-specific CD4+ T cells into lymphopenic mice that express an endogenous antigen as a systemic, secreted protein results in severe autoimmunity resembling graft-versus-host disease. T cells that respond to this endogenous antigen develop into effector cells that cause the disease. Recovery from this disease is associated with the subsequent generation of FoxP3+CD25+ regulatory cells in the periphery. Both pathogenic effector cells and protective regulatory cells develop from the same antigen-specific T cell population after activation, and their generation may occur in parallel or sequentially. Interleukin (IL)-2 plays a dual role in this systemic T cell reaction. In the absence of IL-2, the acute disease is mild because of reduced T cell effector function, but a chronic and progressive disease develops late and is associated with a failure to generate FoxP3+ regulatory T (T reg) cells in the periphery. Thus, a peripheral T cell reaction to a systemic antigen goes through a phase of effector cell–mediated pathology followed by T reg cell–mediated recovery, and both require the growth factor IL-2

    Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease

    Get PDF
    To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell–mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-γ produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17–producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease

    Phantom-based evaluation of dose exposure of ultrafast combined kV-MV-CBCT towards clinical implementation for IGRT of lung cancer

    Get PDF
    Purpose: Combined ultrafast 90\ub0+90\ub0 kV-MV-CBCT within single breath-hold of 15s has high clinical potential for accelerating imaging for lung cancer patients treated with deep inspiration breath-hold (DIBH). For clinical feasibility of kV-MV-CBCT, dose exposure has to be small compared to prescribed dose. In this study, kV-MV dose output is evaluated and compared to clinically-established kV-CBCT. Methods: Accurate dose calibration was performed for kV and MV energy; beam quality was determined. For direct comparison of MV and kV dose output, relative biological effectiveness (RBE) was considered. CT dose index (CTDI) was determined and measurements in various representative locations of an inhomogeneous thorax phantom were performed to simulate the patient situation. Results: A measured dose of 20.5mGE (Gray-equivalent) in the target region was comparable to kV-CBCT (31.2mGy for widely-used, and 9.1mGy for latest available preset), whereas kVMV spared healthy tissue and reduced dose to 6.6mGE (30%) due to asymmetric dose distribution. The measured weighted CTDI of 12mGE for kV-MV lay in between both clinical presets. Conclusions: Dosimetric properties were in agreement with established imaging techniques, whereas exposure to healthy tissue was reduced. By reducing the imaging time to a single breathhold of 15s, ultrafast combined kV-MV CBCT shortens patient time at the treatment couch and thus improves patient comfort. It is therefore usable for imaging of hypofractionated lung DIBH patients

    IgG seroprevalence of COVID-19 among people living with HIV or at high risk of HIV in south-west Germany: A seroprevalence study

    Get PDF
    Objectives: Seroprevalence studies of SARS-CoV-2 have shown that there is a high number of undiagnosed missing cases. Seroprevalence of SARS-CoV-2 in people living with HIV (PLWH) is lacking. Therefore, we conducted a prospective cross-sectional study to estimate the seroprevalence of SARS-CoV-2 among PLWH without known diagnosis of COVID-19 in the south-west of Germany. Methods: Serological testing for SARS-CoV-2 immunoglobulin G (IgG) antibodies based on two assays was performed in PLWH who visited the outpatient HIV centre of two hospitals from April to June 2020. Additionally, patients had to answer questionnaires about possible COVID-19-related symptoms and predefined risk factors. Moreover, we tested 50 non-HIV-infected patients receiving post- or pre-exposure (PEP/PrEP) HIV prophylaxis. Results: In all, 594 (488 male, 106 female) PLWH (median age 51 years) and 50 PEP/PrEP-users were included in the study. The estimated seroprevalence of the PLWH cohort was 1.85% (11/594), with 11 positive tested cases in the cohort. Among all patients, only five had COVID-19-related symptoms. One PCRpositive patient did not show any antibody response in repeatedly carried out tests. None of the patients was hospitalized due to COVID-19. Three PrEP users were tested positive. Three patients had been previously diagnosed with SARSCOV-2 infection before inclusion. The used questionnaire did not help to detect SARS-CoV-2 positive patients. Conclusions: Despite the limitation of being only a snapshot in time because of the ongoing pandemic, to our knowledge this is the largest study so far on seroprevalence of SARS-CoV-2 in PLWH in Germany. Our study suggests that the seroprevalence of SARS-CoV-2 in PLWH is comparable to those previously reported for parts of the general German population and that the questionnaire used here might not be the best tool to predict COVID-19 diagnosis

    Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy

    Get PDF
    Peptides presented at the cell surface reflect the protein content of the cell; those on HLA class I molecules comprise the critical peptidome elements interacting with CD8 T lymphocytes. We hypothesize that peptidomes from ex vivo tumour samples encompass immunogenic tumour antigens. Here, we uncover >6000 HLA-bound peptides from HLA-A*02+ glioblastoma, of which over 3000 were restricted by HLA-A*02. We prioritized in-depth investigation of 10 glioblastoma-associated antigens based on high expression in tumours, very low or absent expression in healthy tissues, implication in gliomagenesis and immunogenicity. Patients with glioblastoma showed no T cell tolerance to these peptides. Moreover, we demonstrated specific lysis of tumour cells by patients' CD8+ T cells in vitro. In vivo, glioblastoma-specific CD8+ T cells were present at the tumour site. Overall, our data show the physiological relevance of the peptidome approach and provide a critical advance for designing a rational glioblastoma immunotherapy. The peptides identified in our study are currently being tested as a multipeptide vaccine (IMA950) in patients with glioblastom

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    • …
    corecore